Skip to main content

Posts

Featured post

Circularity

  The circularity symbol is used to describe how close an object should be to a true circle. Sometimes called roundness, circularity is a 2-Dimensional tolerance that controls the overall form of a circle ensuring it is not too oblong, square, or out of round. Roundness is independent of any datum feature and only is always less than the diameter dimensional tolerance of the part. Circularity essentially make a cross section of a cylindrical or round feature and determines if the circle formed in that cross section is round.
Recent posts

GD&T basics

GD&T Symbols List Flatness Flatness GD&T Flatness is a common symbol that references how flat a surface is regardless of any other datum’s or features. It comes in useful if a feature is to be defined on a drawing that needs to be uniformly flat without tightening any other dimensions on the drawing. The flatness tolerance references two parallel planes (parallel to the surface that it is called out on) that define a zone where the entire reference surface must lie. Straightness Straightness actually has two very different functions in GD&T depending how it is called out. In its normal form or Surface Straightness, is a tolerance that controls the form of a line somewhere on the surface or the feature. Axis Straightness is a tolerance that controls how much curve is allowed in the part’s axis. This is usually called out with an included call to maximum material condition. Both callouts are very different from ea

Heat Treatment process

Heat treatment is the heating and cooling of metals to change their physical and mechanical properties, without letting it change its  shape.  Heat treatment  could be said to be a method for strengthening materials but could also be used to alter some mechanical properties such as improving formability, machining, etc. The most common application is metallurgical but heat treatment can also be used in manufacture of glass, aluminum, steel and many more materials. The process of heat treatment involves the use of heating or cooling, usually to extreme temperatures to achieve the wanted result. It is very important manufacturing processes that can not only help manufacturing process but can also improve product, its performance, and its characteristics in many ways. Hardening Hardening involves heating of steel, keeping it at an appropriate temperature until all pearlite is transformed into austenite, and then quenching it rapidly in water or oil. The temperature at which a

Sheet metal operations - Cutting and related processes

 Introduction:  Sheet metal forming, also called stamping, involves operations such as cutting, drawing, spinning etc on sheets. Sheet metal forming involves predominantly tensile forces, compared to bulk forming, which involve compressive forces. Due to tensile stress, sheets may undergo localized deformation followed by cracking. Sheets are rolled products, which have thickness less than 6mm. Sheet metal operations involve work pieces with large surface area to thickness ratio. Blanks are cut from sheets. These blanks are subsequently subjected to one or more sheet forming operations in order to get the finished component. Sheet metal forming is widely used for producing wide range of products starting from household vessels to aerospace parts, to automobile or aircraft bodies. Final shape is obtained by applying tensile, shear or combination of forces and stretching or shrinking the sheet metal blanks. Hydraulic or mechanical presses called stamping presses are used for the f

Hydraulic Braking System

Hydraulic Braking System       A hydraulic braking system transmits brake-pedal force to the wheel brakes through pressurized fluid, converting the fluid pressure into useful work of braking at the wheels. A simple, single-line hydraulic layout used to operate a drum and disc brake system is illustrated in Fig. 28.36. The brake pedal relays the driver’s foot effort to the master-cylinder piston, which compresses the brake fluid. This fluid pressure is equally transmitted throughout the fluid to the front disc-caliper pistons and to the rear wheel-cylinder pistons. As per the regulations a separate mechanical parking brake must be incorporated with at least two wheels. This provision also allows the driver to stop the vehicle in the event of failure of the hydraulic brake system.

Electromagnetic Brake System

INTRODUCTION            With the technological enhancement a lot of new technologies are arriving in the world. Many industries got their faces due to the arrival of these technologies. An automobile technology is one of them. As a part of automobile, there are also innovations in brake. The commonly used types of brakes used in automobiles are drum and disc brakes. Various types of braking system used are hydraulic,pneumatic etc.

working of breaking system in automobiles

Definition of automobile       brake system Actually, vehicle can be regard as energy conversion device, which transfers the momentum into heat, in other words, which transfers the kinetic energy into thermal energy. The brakes are used to reduce the speed of the vehicle, and the speed of conversion determines the rate of the vehicle slows down.